perlXStut - Tutorial for writing XSUBs
This tutorial starts with very simple examples and becomes more complex, with each new example adding new features. Certain concepts may not be completely explained until later in the tutorial in order to slowly ease the reader into building extensions.
This tutorial was written from a Unix point of view. Where I know them to be otherwise different for other platforms (e.g. Win32), I will list them. If you find something that was missed, please let me know.
To understand what kinds of incompatibilities one may expect, and in the rare case that the version of Perl on your machine is older than this document, see the section on ``Troubleshooting these Examples'' for more information.
If your extension uses some features of Perl which are not available on older releases of Perl, your users would appreciate an early meaningful warning. You would probably put this information into the README file, but nowadays installation of extensions may be performed automatically, guided by CPAN.pm module or other tools.
In MakeMaker-based installations, Makefile.PL provides the earliest opportunity to perform version checks. One can put something like this in Makefile.PL for this purpose:
eval { require 5.007 } or die <<EOD; ############ ### This module uses frobnication framework which is not available before ### version 5.007 of Perl. Upgrade your Perl before installing Kara::Mba. ############ EOD
This tutorial can still be used on such a system. The XSUB build mechanism will check the system and build a dynamically-loadable library if possible, or else a static library and then, optionally, a new statically-linked executable with that static library linked in.
Should you wish to build a statically-linked executable on a system which can dynamically load libraries, you may, in all the following examples, where the command ""make"`` with no arguments is executed, run the command ''"make perl"" instead.
If you have generated such a statically-linked executable by choice, then instead of saying ""make test"``, you should say ''"make test_static"``. On systems that cannot build dynamically-loadable libraries at all, simply saying ''"make test"" is sufficient.
Run ""h2xs -A -n Mytest"". This creates a directory named Mytest, possibly under ext/ if that directory exists in the current working directory. Several files will be created in the Mytest dir, including MANIFEST, Makefile.PL, Mytest.pm, Mytest.xs, test.pl, and Changes.
The MANIFEST file contains the names of all the files just created in the Mytest directory.
The file Makefile.PL should look something like this:
use ExtUtils::MakeMaker; # See lib/ExtUtils/MakeMaker.pm for details of how to influence # the contents of the Makefile that is written. WriteMakefile( NAME => 'Mytest', VERSION_FROM => 'Mytest.pm', # finds $VERSION LIBS => [''], # e.g., '-lm' DEFINE => '', # e.g., '-DHAVE_SOMETHING' INC => '', # e.g., '-I/usr/include/other' );
The file Mytest.pm should start with something like this:
package Mytest;
use strict; use warnings;
require Exporter; require DynaLoader;
our @ISA = qw(Exporter DynaLoader); # Items to export into callers namespace by default. Note: do not export # names by default without a very good reason. Use EXPORT_OK instead. # Do not simply export all your public functions/methods/constants. our @EXPORT = qw(
); our $VERSION = '0.01';
bootstrap Mytest $VERSION;
# Preloaded methods go here.
# Autoload methods go after __END__, and are processed by the autosplit program.
1; __END__ # Below is the stub of documentation for your module. You better edit it!
The rest of the .pm file contains sample code for providing documentation for the extension.
Finally, the Mytest.xs file should look something like this:
#include "EXTERN.h" #include "perl.h" #include "XSUB.h"
MODULE = Mytest PACKAGE = Mytest
Let's edit the .xs file by adding this to the end of the file:
void hello() CODE: printf("Hello, world!\n");
It is okay for the lines starting at the ``CODE:'' line to not be indented. However, for readability purposes, it is suggested that you indent CODE: one level and the lines following one more level.
Now we'll run ""perl Makefile.PL"". This will create a real Makefile, which make needs. Its output looks something like:
% perl Makefile.PL Checking if your kit is complete... Looks good Writing Makefile for Mytest %
Now, running make will produce output that looks something like this (some long lines have been shortened for clarity and some extraneous lines have been deleted):
% make umask 0 && cp Mytest.pm ./blib/Mytest.pm perl xsubpp -typemap typemap Mytest.xs >Mytest.tc && mv Mytest.tc Mytest.c Please specify prototyping behavior for Mytest.xs (see perlxs manual) cc -c Mytest.c Running Mkbootstrap for Mytest () chmod 644 Mytest.bs LD_RUN_PATH="" ld -o ./blib/PA-RISC1.1/auto/Mytest/Mytest.sl -b Mytest.o chmod 755 ./blib/PA-RISC1.1/auto/Mytest/Mytest.sl cp Mytest.bs ./blib/PA-RISC1.1/auto/Mytest/Mytest.bs chmod 644 ./blib/PA-RISC1.1/auto/Mytest/Mytest.bs Manifying ./blib/man3/Mytest.3 %
You can safely ignore the line about ``prototyping behavior'' - it is explained in the section ``The PROTOTYPES: Keyword'' in perlxs.
If you are on a Win32 system, and the build process fails with linker errors for functions in the C library, check if your Perl is configured to use PerlCRT (running perl -V:libc should show you if this is the case). If Perl is configured to use PerlCRT, you have to make sure PerlCRT.lib is copied to the same location that msvcrt.lib lives in, so that the compiler can find it on its own. msvcrt.lib is usually found in the Visual C compiler's lib directory (e.g. C:/DevStudio/VC/lib).
Perl has its own special way of easily writing test scripts, but for this example only, we'll create our own test script. Create a file called hello that looks like this:
#! /opt/perl5/bin/perl
use ExtUtils::testlib;
use Mytest;
Mytest::hello();
Now we make the script executable ("chmod +x hello"), run the script and we should see the following output:
% ./hello Hello, world! %
Add the following to the end of Mytest.xs:
int is_even(input) int input CODE: RETVAL = (input % 2 == 0); OUTPUT: RETVAL
There does not need to be whitespace at the start of the ""int input"`` line, but it is useful for improving readability. Placing a semi-colon at the end of that line is also optional. Any amount and kind of whitespace may be placed between the ''"int"`` and ''"input"".
Now re-run make to rebuild our new shared library.
Now perform the same steps as before, generating a Makefile from the Makefile.PL file, and running make.
In order to test that our extension works, we now need to look at the file test.pl. This file is set up to imitate the same kind of testing structure that Perl itself has. Within the test script, you perform a number of tests to confirm the behavior of the extension, printing ``ok'' when the test is correct, ``not ok'' when it is not. Change the print statement in the BEGIN block to print ``1..4'', and add the following code to the end of the file:
print &Mytest::is_even(0) == 1 ? "ok 2" : "not ok 2", "\n"; print &Mytest::is_even(1) == 0 ? "ok 3" : "not ok 3", "\n"; print &Mytest::is_even(2) == 1 ? "ok 4" : "not ok 4", "\n";
We will be calling the test script through the command ""make test"". You should see output that looks something like this:
% make test PERL_DL_NONLAZY=1 /opt/perl5.004/bin/perl (lots of -I arguments) test.pl 1..4 ok 1 ok 2 ok 3 ok 4 %
h2xs creates a number of files in the extension directory. The file Makefile.PL is a perl script which will generate a true Makefile to build the extension. We'll take a closer look at it later.
The .pm and .xs files contain the meat of the extension. The .xs file holds the C routines that make up the extension. The .pm file contains routines that tell Perl how to load your extension.
Generating the Makefile and running "make" created a directory called blib (which stands for ``build library'') in the current working directory. This directory will contain the shared library that we will build. Once we have tested it, we can install it into its final location.
Invoking the test script via ""make test"" did something very important. It invoked perl with all those "-I" arguments so that it could find the various files that are part of the extension. It is very important that while you are still testing extensions that you use ""make test"``. If you try to run the test script all by itself, you will get a fatal error. Another reason it is important to use ''"make test"`` to run your test script is that if you are testing an upgrade to an already-existing version, using ''"make test"" insures that you will test your new extension, not the already-existing version.
When Perl sees a "use extension;", it searches for a file with the same name as the "use"'d extension that has a .pm suffix. If that file cannot be found, Perl dies with a fatal error. The default search path is contained in the @INC array.
In our case, Mytest.pm tells perl that it will need the Exporter and Dynamic Loader extensions. It then sets the @ISA and @EXPORT arrays and the $VERSION scalar; finally it tells perl to bootstrap the module. Perl will call its dynamic loader routine (if there is one) and load the shared library.
The two arrays @ISA and @EXPORT are very important. The @ISA array contains a list of other packages in which to search for methods (or subroutines) that do not exist in the current package. This is usually only important for object-oriented extensions (which we will talk about much later), and so usually doesn't need to be modified.
The @EXPORT array tells Perl which of the extension's variables and subroutines should be placed into the calling package's namespace. Because you don't know if the user has already used your variable and subroutine names, it's vitally important to carefully select what to export. Do not export method or variable names by default without a good reason.
As a general rule, if the module is trying to be object-oriented then don't export anything. If it's just a collection of functions and variables, then you can export them via another array, called @EXPORT_OK. This array does not automatically place its subroutine and variable names into the namespace unless the user specifically requests that this be done.
See perlmod for more information.
The $VERSION variable is used to ensure that the .pm file and the shared library are ``in sync'' with each other. Any time you make changes to the .pm or .xs files, you should increment the value of this variable.
By running ""make test"``, you ensure that your test.pl script runs and uses the correct version of your extension. If you have many test cases, you might want to copy Perl's test style. Create a directory named ''t`` in the extension's directory and append the suffix ''.t`` to the names of your test files. When you run ''"make test"", all of these test files will be executed.
Add the following to the end of Mytest.xs:
void round(arg) double arg CODE: if (arg > 0.0) { arg = floor(arg + 0.5); } else if (arg < 0.0) { arg = ceil(arg - 0.5); } else { arg = 0.0; } OUTPUT: arg
Edit the Makefile.PL file so that the corresponding line looks like this:
'LIBS' => ['-lm'], # e.g., '-lm'
Generate the Makefile and run make. Change the BEGIN block to print ``1..9'' and add the following to test.pl:
$i = -1.5; &Mytest::round($i); print $i == -2.0 ? "ok 5" : "not ok 5", "\n"; $i = -1.1; &Mytest::round($i); print $i == -1.0 ? "ok 6" : "not ok 6", "\n"; $i = 0.0; &Mytest::round($i); print $i == 0.0 ? "ok 7" : "not ok 7", "\n"; $i = 0.5; &Mytest::round($i); print $i == 1.0 ? "ok 8" : "not ok 8", "\n"; $i = 1.2; &Mytest::round($i); print $i == 1.0 ? "ok 9" : "not ok 9", "\n";
Running ""make test"" should now print out that all nine tests are okay.
Notice that in these new test cases, the argument passed to round was a scalar variable. You might be wondering if you can round a constant or literal. To see what happens, temporarily add the following line to test.pl:
&Mytest::round(3);
Run ""make test"" and notice that Perl dies with a fatal error. Perl won't let you change the value of constants!
The list of output parameters occurs at the very end of the function, just before after the OUTPUT: directive. The use of RETVAL tells Perl that you wish to send this value back as the return value of the XSUB function. In Example 3, we wanted the ``return value'' placed in the original variable which we passed in, so we listed it (and not RETVAL) in the OUTPUT: section.
The first section maps various C data types to a name, which corresponds somewhat with the various Perl types. The second section contains C code which xsubpp uses to handle input parameters. The third section contains C code which xsubpp uses to handle output parameters.
Let's take a look at a portion of the .c file created for our extension. The file name is Mytest.c:
XS(XS_Mytest_round) { dXSARGS; if (items != 1) croak("Usage: Mytest::round(arg)"); { double arg = (double)SvNV(ST(0)); /* XXXXX */ if (arg > 0.0) { arg = floor(arg + 0.5); } else if (arg < 0.0) { arg = ceil(arg - 0.5); } else { arg = 0.0; } sv_setnv(ST(0), (double)arg); /* XXXXX */ } XSRETURN(1); }
Notice the two lines commented with ``XXXXX''. If you check the first section of the typemap file, you'll see that doubles are of type T_DOUBLE. In the INPUT section, an argument that is T_DOUBLE is assigned to the variable arg by calling the routine SvNV on something, then casting it to double, then assigned to the variable arg. Similarly, in the OUTPUT section, once arg has its final value, it is passed to the sv_setnv function to be passed back to the calling subroutine. These two functions are explained in perlguts; we'll talk more later about what that ``ST(0)'' means in the section on the argument stack.
Create a new directory called Mytest2 at the same level as the directory Mytest. In the Mytest2 directory, create another directory called mylib, and cd into that directory.
Here we'll create some files that will generate a test library. These will include a C source file and a header file. We'll also create a Makefile.PL in this directory. Then we'll make sure that running make at the Mytest2 level will automatically run this Makefile.PL file and the resulting Makefile.
In the mylib directory, create a file mylib.h that looks like this:
#define TESTVAL 4
extern double foo(int, long, const char*);
Also create a file mylib.c that looks like this:
#include <stdlib.h> #include "./mylib.h"
double foo(int a, long b, const char *c) { return (a + b + atof(c) + TESTVAL); }
And finally create a file Makefile.PL that looks like this:
use ExtUtils::MakeMaker; $Verbose = 1; WriteMakefile( NAME => 'Mytest2::mylib', SKIP => [qw(all static static_lib dynamic dynamic_lib)], clean => {'FILES' => 'libmylib$(LIB_EXT)'}, );
sub MY::top_targets { ' all :: static
pure_all :: static
static :: libmylib$(LIB_EXT)
libmylib$(LIB_EXT): $(O_FILES) $(AR) cr libmylib$(LIB_EXT) $(O_FILES) $(RANLIB) libmylib$(LIB_EXT)
'; }
Make sure you use a tab and not spaces on the lines beginning with ``$(AR)'' and ``$(RANLIB)''. Make will not function properly if you use spaces. It has also been reported that the ``cr'' argument to $(AR) is unnecessary on Win32 systems.
We will now create the main top-level Mytest2 files. Change to the directory above Mytest2 and run the following command:
% h2xs -O -n Mytest2 ./Mytest2/mylib/mylib.h
This will print out a warning about overwriting Mytest2, but that's okay. Our files are stored in Mytest2/mylib, and will be untouched.
The normal Makefile.PL that h2xs generates doesn't know about the mylib directory. We need to tell it that there is a subdirectory and that we will be generating a library in it. Let's add the argument MYEXTLIB to the WriteMakefile call so that it looks like this:
WriteMakefile( 'NAME' => 'Mytest2', 'VERSION_FROM' => 'Mytest2.pm', # finds $VERSION 'LIBS' => [''], # e.g., '-lm' 'DEFINE' => '', # e.g., '-DHAVE_SOMETHING' 'INC' => '', # e.g., '-I/usr/include/other' 'MYEXTLIB' => 'mylib/libmylib$(LIB_EXT)', );
and then at the end add a subroutine (which will override the pre-existing subroutine). Remember to use a tab character to indent the line beginning with ``cd''!
sub MY::postamble { ' $(MYEXTLIB): mylib/Makefile cd mylib && $(MAKE) $(PASSTHRU) '; }
Let's also fix the MANIFEST file so that it accurately reflects the contents of our extension. The single line that says ``mylib'' should be replaced by the following three lines:
mylib/Makefile.PL mylib/mylib.c mylib/mylib.h
To keep our namespace nice and unpolluted, edit the .pm file and change the variable @EXPORT to @EXPORT_OK. Finally, in the .xs file, edit the #include line to read:
#include "mylib/mylib.h"
And also add the following function definition to the end of the .xs file:
double foo(a,b,c) int a long b const char * c OUTPUT: RETVAL
Now we also need to create a typemap file because the default Perl doesn't currently support the const char * type. Create a file called typemap in the Mytest2 directory and place the following in it:
const char * T_PV
Now run perl on the top-level Makefile.PL. Notice that it also created a Makefile in the mylib directory. Run make and watch that it does cd into the mylib directory and run make in there as well.
Now edit the test.pl script and change the BEGIN block to print ``1..4'', and add the following lines to the end of the script:
print &Mytest2::foo(1, 2, "Hello, world!") == 7 ? "ok 2\n" : "not ok 2\n"; print &Mytest2::foo(1, 2, "0.0") == 7 ? "ok 3\n" : "not ok 3\n"; print abs(&Mytest2::foo(0, 0, "-3.4") - 0.6) <= 0.01 ? "ok 4\n" : "not ok 4\n";
(When dealing with floating-point comparisons, it is best to not check for equality, but rather that the difference between the expected and actual result is below a certain amount (called epsilon) which is 0.01 in this case)
Run ""make test"" and all should be well.
MODULE = Mytest2 PACKAGE = Mytest2
Anything before this line is plain C code which describes which headers to include, and defines some convenience functions. No translations are performed on this part, apart from having embedded POD documentation skipped over (see perlpod) it goes into the generated output C file as is.
Anything after this line is the description of XSUB functions. These descriptions are translated by xsubpp into C code which implements these functions using Perl calling conventions, and which makes these functions visible from Perl interpreter.
Pay a special attention to the function "constant". This name appears twice in the generated .xs file: once in the first part, as a static C function, then another time in the second part, when an XSUB interface to this static C function is defined.
This is quite typical for .xs files: usually the .xs file provides an interface to an existing C function. Then this C function is defined somewhere (either in an external library, or in the first part of .xs file), and a Perl interface to this function (i.e. ``Perl glue'') is described in the second part of .xs file. The situation in ``EXAMPLE 1'', ``EXAMPLE 2'', and ``EXAMPLE 3'', when all the work is done inside the ``Perl glue'', is somewhat of an exception rather than the rule.
double foo(a,b,c) int a long b const char * c OUTPUT: RETVAL
Note that in contrast with ``EXAMPLE 1'', ``EXAMPLE 2'' and ``EXAMPLE 3'', this description does not contain the actual code for what is done is done during a call to Perl function foo(). To understand what is going on here, one can add a CODE section to this XSUB:
double foo(a,b,c) int a long b const char * c CODE: RETVAL = foo(a,b,c); OUTPUT: RETVAL
However, these two XSUBs provide almost identical generated C code: xsubpp compiler is smart enough to figure out the "CODE:" section from the first two lines of the description of XSUB. What about "OUTPUT:" section? In fact, that is absolutely the same! The "OUTPUT:" section can be removed as well, as far as "CODE:" section or "PPCODE:" section is not specified: xsubpp can see that it needs to generate a function call section, and will autogenerate the OUTPUT section too. Thus one can shortcut the XSUB to become:
double foo(a,b,c) int a long b const char * c
Can we do the same with an XSUB
int is_even(input) int input CODE: RETVAL = (input % 2 == 0); OUTPUT: RETVAL
of ``EXAMPLE 2''? To do this, one needs to define a C function "int is_even(int input)". As we saw in ``Anatomy of .xs file'', a proper place for this definition is in the first part of .xs file. In fact a C function
int is_even(int arg) { return (arg % 2 == 0); }
is probably overkill for this. Something as simple as a "#define" will do too:
#define is_even(arg) ((arg) % 2 == 0)
After having this in the first part of .xs file, the ``Perl glue'' part becomes as simple as
int is_even(input) int input
This technique of separation of the glue part from the workhorse part has obvious tradeoffs: if you want to change a Perl interface, you need to change two places in your code. However, it removes a lot of clutter, and makes the workhorse part independent from idiosyncrasies of Perl calling convention. (In fact, there is nothing Perl-specific in the above description, a different version of xsubpp might have translated this to TCL glue or Python glue as well.)
When you specify arguments to routines in the .xs file, you are really passing three pieces of information for each argument listed. The first piece is the order of that argument relative to the others (first, second, etc). The second is the type of argument, and consists of the type declaration of the argument (e.g., int, char*, etc). The third piece is the calling convention for the argument in the call to the library function.
While Perl passes arguments to functions by reference, C passes arguments by value; to implement a C function which modifies data of one of the ``arguments'', the actual argument of this C function would be a pointer to the data. Thus two C functions with declarations
int string_length(char *s); int upper_case_char(char *cp);
may have completely different semantics: the first one may inspect an array of chars pointed by s, and the second one may immediately dereference "cp" and manipulate *cp only (using the return value as, say, a success indicator). From Perl one would use these functions in a completely different manner.
One conveys this info to xsubpp by replacing "*" before the argument by "&". "&" means that the argument should be passed to a library function by its address. The above two function may be XSUB-ified as
int string_length(s) char * s
int upper_case_char(cp) char &cp
For example, consider:
int foo(a,b) char &a char * b
The first Perl argument to this function would be treated as a char and assigned to the variable a, and its address would be passed into the function foo. The second Perl argument would be treated as a string pointer and assigned to the variable b. The value of b would be passed into the function foo. The actual call to the function foo that xsubpp generates would look like this:
foo(&a, b);
xsubpp will parse the following function argument lists identically:
char &a char&a char & a
However, to help ease understanding, it is suggested that you place a ``&'' next to the variable name and away from the variable type), and place a ``*'' near the variable type, but away from the variable name (as in the call to foo above). By doing so, it is easy to understand exactly what will be passed to the C function --- it will be whatever is in the ``last column''.
You should take great pains to try to pass the function the type of variable it wants, when possible. It will save you a lot of trouble in the long run.
When you list the arguments to the XSUB in the .xs file, that tells xsubpp which argument corresponds to which of the argument stack (i.e., the first one listed is the first argument, and so on). You invite disaster if you do not list them in the same order as the function expects them.
The actual values on the argument stack are pointers to the values passed in. When an argument is listed as being an OUTPUT value, its corresponding value on the stack (i.e., ST(0) if it was the first argument) is changed. You can verify this by looking at the C code generated for Example 3. The code for the round() XSUB routine contains lines that look like this:
double arg = (double)SvNV(ST(0)); /* Round the contents of the variable arg */ sv_setnv(ST(0), (double)arg);
The arg variable is initially set by taking the value from ST(0), then is stored back into ST(0) at the end of the routine.
XSUBs are also allowed to return lists, not just scalars. This must be done by manipulating stack values ST(0), ST(1), etc, in a subtly different way. See perlxs for details.
XSUBs are also allowed to avoid automatic conversion of Perl function arguments to C function arguments. See perlxs for details. Some people prefer manual conversion by inspecting ST(i) even in the cases when automatic conversion will do, arguing that this makes the logic of an XSUB call clearer. Compare with ``Getting the fat out of XSUBs'' for a similar tradeoff of a complete separation of ``Perl glue'' and ``workhorse'' parts of an XSUB.
While experts may argue about these idioms, a novice to Perl guts may prefer a way which is as little Perl-guts-specific as possible, meaning automatic conversion and automatic call generation, as in ``Getting the fat out of XSUBs''. This approach has the additional benefit of protecting the XSUB writer from future changes to the Perl API.
You may intersperse documentation and Perl code within the .pm file. In fact, if you want to use method autoloading, you must do this, as the comment inside the .pm file explains.
See perlpod for more information about the pod format.
Alternately, you can specify the exact directory to place the extension's files by placing a ``PREFIX=/destination/directory'' after the make install. (or in between the make and install if you have a brain-dead version of make). This can be very useful if you are building an extension that will eventually be distributed to multiple systems. You can then just archive the files in the destination directory and distribute them to your destination systems.
This extension is very Unix-oriented (struct statfs and the statfs system call). If you are not running on a Unix system, you can substitute for statfs any other function that returns multiple values, you can hard-code values to be returned to the caller (although this will be a bit harder to test the error case), or you can simply not do this example. If you change the XSUB, be sure to fix the test cases to match the changes.
Return to the Mytest directory and add the following code to the end of Mytest.xs:
void statfs(path) char * path INIT: int i; struct statfs buf;
PPCODE: i = statfs(path, &buf); if (i == 0) { XPUSHs(sv_2mortal(newSVnv(buf.f_bavail))); XPUSHs(sv_2mortal(newSVnv(buf.f_bfree))); XPUSHs(sv_2mortal(newSVnv(buf.f_blocks))); XPUSHs(sv_2mortal(newSVnv(buf.f_bsize))); XPUSHs(sv_2mortal(newSVnv(buf.f_ffree))); XPUSHs(sv_2mortal(newSVnv(buf.f_files))); XPUSHs(sv_2mortal(newSVnv(buf.f_type))); XPUSHs(sv_2mortal(newSVnv(buf.f_fsid[0]))); XPUSHs(sv_2mortal(newSVnv(buf.f_fsid[1]))); } else { XPUSHs(sv_2mortal(newSVnv(errno))); }
You'll also need to add the following code to the top of the .xs file, just after the include of ``XSUB.h'':
#include <sys/vfs.h>
Also add the following code segment to test.pl while incrementing the ``1..9'' string in the BEGIN block to ``1..11'':
@a = &Mytest::statfs("/blech"); print ((scalar(@a) == 1 && $a[0] == 2) ? "ok 10\n" : "not ok 10\n"); @a = &Mytest::statfs("/"); print scalar(@a) == 9 ? "ok 11\n" : "not ok 11\n";
We do this by using the PPCODE: directive, rather than the CODE: directive. This tells xsubpp that we will be managing the return values that will be put on the argument stack by ourselves.
The XPUSH* macros will automatically extend the return stack to prevent it from being overrun. You push values onto the stack in the order you want them seen by the calling program.
EXTEND(SP, 9);
The tradeoff is that one needs to calculate the number of return values in advance (though overextending the stack will not typically hurt anything but memory consumption).
Similarly, in the failure branch we could use "PUSHs" without extending the stack: the Perl function reference comes to an XSUB on the stack, thus the stack is always large enough to take one return value.
This extension is somewhat contrived. It is based on the code in the previous example. It calls the statfs function multiple times, accepting a reference to an array of filenames as input, and returning a reference to an array of hashes containing the data for each of the filesystems.
Return to the Mytest directory and add the following code to the end of Mytest.xs:
SV * multi_statfs(paths) SV * paths INIT: AV * results; I32 numpaths = 0; int i, n; struct statfs buf;
if ((!SvROK(paths)) || (SvTYPE(SvRV(paths)) != SVt_PVAV) || ((numpaths = av_len((AV *)SvRV(paths))) < 0)) { XSRETURN_UNDEF; } results = (AV *)sv_2mortal((SV *)newAV()); CODE: for (n = 0; n <= numpaths; n++) { HV * rh; STRLEN l; char * fn = SvPV(*av_fetch((AV *)SvRV(paths), n, 0), l);
i = statfs(fn, &buf); if (i != 0) { av_push(results, newSVnv(errno)); continue; }
rh = (HV *)sv_2mortal((SV *)newHV());
hv_store(rh, "f_bavail", 8, newSVnv(buf.f_bavail), 0); hv_store(rh, "f_bfree", 7, newSVnv(buf.f_bfree), 0); hv_store(rh, "f_blocks", 8, newSVnv(buf.f_blocks), 0); hv_store(rh, "f_bsize", 7, newSVnv(buf.f_bsize), 0); hv_store(rh, "f_ffree", 7, newSVnv(buf.f_ffree), 0); hv_store(rh, "f_files", 7, newSVnv(buf.f_files), 0); hv_store(rh, "f_type", 6, newSVnv(buf.f_type), 0);
av_push(results, newRV((SV *)rh)); } RETVAL = newRV((SV *)results); OUTPUT: RETVAL
And add the following code to test.pl, while incrementing the ``1..11'' string in the BEGIN block to ``1..13'':
$results = Mytest::multi_statfs([ '/', '/blech' ]); print ((ref $results->[0]) ? "ok 12\n" : "not ok 12\n"); print ((! ref $results->[1]) ? "ok 13\n" : "not ok 13\n");
Specifically, we read pathnames one at a time from the input array, and store the results in an output array (results) in the same order. If statfs fails, the element pushed onto the return array is the value of errno after the failure. If statfs succeeds, though, the value pushed onto the return array is a reference to a hash containing some of the information in the statfs structure.
As with the return stack, it would be possible (and a small performance win) to pre-extend the return array before pushing data into it, since we know how many elements we will return:
av_extend(results, numpaths);
Suppose that for some strange reason we need a wrapper around the standard C library function "fputs()". This is all we need:
#define PERLIO_NOT_STDIO 0 #include "EXTERN.h" #include "perl.h" #include "XSUB.h"
#include <stdio.h>
int fputs(s, stream) char * s FILE * stream
The real work is done in the standard typemap.
But you loose all the fine stuff done by the perlio layers. This calls the stdio function "fputs()", which knows nothing about them.
The standard typemap offers three variants of PerlIO *: "InputStream" (T_IN), "InOutStream" (T_INOUT) and "OutputStream" (T_OUT). A bare "PerlIO *" is considered a T_INOUT. If it matters in your code (see below for why it might) #define or typedef one of the specific names and use that as the argument or result type in your XS file.
The standard typemap does not contain PerlIO * before perl 5.7, but it has the three stream variants. Using a PerlIO * directly is not backwards compatible unless you provide your own typemap.
For streams coming from perl the main difference is that "OutputStream" will get the output PerlIO * - which may make a difference on a socket. Like in our example...
For streams being handed to perl a new file handle is created (i.e. a reference to a new glob) and associated with the PerlIO * provided. If the read/write state of the PerlIO * is not correct then you may get errors or warnings from when the file handle is used. So if you opened the PerlIO * as ``w'' it should really be an "OutputStream" if open as ``r'' it should be an "InputStream".
Now, suppose you want to use perlio layers in your XS. We'll use the perlio "PerlIO_puts()" function as an example.
In the C part of the XS file (above the first MODULE line) you have
#define OutputStream PerlIO * or typedef PerlIO * OutputStream;
And this is the XS code:
int perlioputs(s, stream) char * s OutputStream stream CODE: RETVAL = PerlIO_puts(stream, s); OUTPUT: RETVAL
We have to use a "CODE" section because "PerlIO_puts()" has the arguments reversed compared to "fputs()", and we want to keep the arguments the same.
Wanting to explore this thoroughly, we want to use the stdio "fputs()" on a PerlIO *. This means we have to ask the perlio system for a stdio "FILE *":
int perliofputs(s, stream) char * s OutputStream stream PREINIT: FILE *fp = PerlIO_findFILE(stream); CODE: if (fp != (FILE*) 0) { RETVAL = fputs(s, fp); } else { RETVAL = -1; } OUTPUT: RETVAL
Note: "PerlIO_findFILE()" will search the layers for a stdio layer. If it can't find one, it will call "PerlIO_exportFILE()" to generate a new stdio "FILE". Please only call "PerlIO_exportFILE()" if you want a new "FILE". It will generate one on each call and push a new stdio layer. So don't call it repeatedly on the same file. "PerlIO()"_findFILE will retrieve the stdio layer once it has been generated by "PerlIO_exportFILE()".
This applies to the perlio system only. For versions before 5.7, "PerlIO_exportFILE()" is equivalent to "PerlIO_findFILE()".
use lib './blib';
use lib './blib';
BEGIN { unshift(@INC, "./blib") }
Reviewed and assisted by Dean Roehrich, Ilya Zakharevich, Andreas Koenig, and Tim Bunce.
PerlIO material contributed by Lupe Christoph, with some clarification by Nick Ing-Simmons.
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |